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Abstract Many problems in computational science and en-
gineering are nonlinear and time-dependent. The solutions
to these problems may include spatially localized features,
such as boundary layers or sharp fronts, that require very
fine grids to resolve. In many cases, it is impractical or
prohibitively expensive to resolve these features with a
globally fine grid, especially in three dimensions. Adap-
tive mesh refinement (AMR) is a dynamic gridding ap-
proach that employs a fine grid only where necessary to re-
solve such features. Numerous AMR codes exist for solv-
ing hyperbolic problems with explicit time stepping and
some classes of linear elliptic problems. Researchers have
paid much less attention to the development of AMR al-
gorithms for the implicit solution of systems of nonlinear
equations.

Recent efforts encompassing a variety of applications
demonstrate that Newton-Krylov methods are effective
when combined with multigrid preconditioners. This sug-
gests that hierarchical methods, such as the Fast Adap-
tive Composite grid (FAC) method of McCormick and
Thomas, can provide effective preconditioning for problems
discretized on locally refined grids. In this paper, we ad-
dress algorithm and implementation issues for the use of
Newton-Krylov-FAC methods on structured AMR grids. In
our software infrastructure, we combine nonlinear solvers
from KINSOL and PETSc with the SAMRAI AMR library,
and include capabilities for implicit time stepping. We have
obtained convergence rates independent of the number of
grid refinement levels for simple, nonlinear, Poisson-like,
problems. Additional efforts to employ this infrastructure in
new applications are underway.
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1 Introduction

Adaptive mesh refinement is a powerful technique for in-
creasing local spatial and temporal resolution in numerical
simulations of scientific and engineering problems. Struc-
tured adaptive mesh refinement (SAMR) algorithms for
increasing resolution in shock problems described by
hyperbolic systems of partial differential equations were
pioneered in [7, 8]. Subsequent developments extended
SAMR to other application areas, including incompressible
flow [1, 23, 34]; flow in porous media [30]; solid mechan-
ics [25, 41]; magnetohydrodynamics [4, 12, 22]; and laser-
plasma interactions [16].

Systems of time-dependent partial differential equations
are often solved using fully explicit or semi-implicit algo-
rithms based on operator-splitting and/or time lagging. In
these situations, it is typical that a linear elliptic or parabolic
equation must be solved at each time integration step. Al-
though the cost of solving these subproblems is not usu-
ally prohibitive, stability constraints limit time step size and
overall accuracy can be compromised due to propagation
of operator splitting errors (see, for example, [31, 37]). In
contrast, fully implicit approaches are free from splitting er-
rors, and time steps are constrained solely by accuracy con-
siderations. This advantage is offset by the need to solve a
large-scale system of nonlinear equations during each inte-
gration time step. The computational efficiency of a numer-
ical method measures the number of numerical operations
required to achieve a prescribed numerical accuracy. Thus,
the relative efficiency of fully implicit methods compared
to other approaches is determined by the trade-off between
a reduction in the number of time steps and the larger cost
of a single time step. In the end, robust and efficient meth-
ods for solving systems of nonlinear equations are needed
for implicit approaches to be competitive with other solu-
tion strategies.

Inexact Newton methods [9, 14, 17] are effective for
many scientific computing problems [32]. The efficiency
of an inexact Newton method is largely determined by the
solver used to approximate the solution of the system of
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linear equations arising at each Newton iteration. An impor-
tant subclass of inexact Newton methods employs Krylov
subspace methods [21] to solve these linear equations. While
a significant advantage of a Newton-Krylov method is that it
does not require explicit formation of a Jacobian matrix, the
choice of a linear preconditioner determines its efficiency.
Multigrid methods are particularly effective preconditioners
in the absence of local mesh refinement [32]. Fortunately,
multigrid techniques can be extended to locally-refined grids
found in SAMR because of the hierarchical nature of those
grids. In particular, Fast Adaptive Composite grid (FAC)
methods [35] have the potential to form the basis of hier-
archical preconditioners for a broad class of multi-physics
problems.

In this paper, we discuss an algorithm and software in-
frastructure that we have developed to explore the potential
of Newton-Krylov-FAC methods on SAMR grids. It com-
bines local mesh refinement capabilities with implicit time
stepping procedures and inexact Newton methods. It is built
largely from existing software libraries. The KINSOL [40]
and PETSc [2, 3] libraries provide inexact Newton meth-
ods. The SAMRAI library [29] provides parallel SAMR ca-
pabilities and software support for the interaction between
nonlinear solution methods, preconditioners, and numerical
discretizations for partial differential equations.

We have addressed a number of important software and
algorithm interoperability issues in the construction of inter-
faces to connect these pre-existing software libraries. The
libraries work together efficiently and yet they are suffi-
ciently decoupled to allow parts of the solution strategy to
be replaced or customized to suit various application needs.
A particularly important point that we discuss is that each
phase of the Newton-Krylov-FAC solution process oper-
ates on data structures well-suited to its needs with minimal
data copying or transformation. Although parallelism is not
our focus here, we note that the full parallel capabilities of
SAMRAI [42] are available to applications that employ this
solver infrastructure. In the remainder of this paper, we fo-
cus our discussion on details of algorithmic and software
coordination.

We note that our approach to providing implicit solver
capabilities on locally refined grids is fundamentally differ-
ent from that used in other AMR solver packages, such as
UG [6], ALBERT [39] or PLTMG [5]. While these pack-
ages include sophisticated multilevel solvers (along with ex-
tensive support for grid generation, discretization, error es-
timation, and parallelism), the implementations are specific
to the data structures employed in each respective package,
and cannot be used in other contexts. In contrast, our ap-
proach leverages existing solver capabilities to the greatest
extent possible, and localizes the use of grid-specific fea-
tures to precisely those solver components that require these
features. Besides the benefit of software reuse, this approach
creates the possibility of accessing other algorithmic capa-
bilities (such as eigensolvers, sensitivity analysis, continu-
ation methods, and pde-constrained optimzation) that inter-
operate with the solver components we employ.

Aspects of structured local mesh refinement and capabil-
ities of SAMRAI are discussed in Sect. 2. Algorithmic com-
ponents are discussed in Sect. 3. This is followed by a de-
scription of the software infrastructure in Sect. 4. A demon-
stration calculation is presented in Sect. 5, and concluding
remarks are made in Sect. 6.

2 Structured local mesh refinement

This section describes structured local mesh refinement
and introduces notation that is used in subsequent sections.
The notation is loosely based on that found in [35]. Let
hk = {h0, h1, . . . , hk}, k = 0, . . . , L − 1, denote collections
of mesh spacings, where hk denotes the mesh spacing of
level k and hk+1 ≤ hk . In particular, h0 is the coarsest mesh
spacing and hL−1 is the finest mesh spacing. An SAMR
grid �hL−1 may be represented as a nested hierarchy of L
grid levels �h0 ⊃ �h1 ⊃ · · · ⊃ �hL−1 , where the coarsest
grid �h0 covers the entire computational domain �. In what
follows, we will sometimes drop the subscript L − 1 when
referring to the entire grid hierarchy �h ≡ �hL−1 , and use
the notation �hk when referring to a subset of the grid hier-
archy consisting of levels 0, . . . , k. Each level �hk consists
of a union of logically rectangular regions, or patches, at the
same mesh resolution hk . This hierarchical representation
facilitates implementation of operations on the composite
grid �h by decomposing them into operations on individual
levels �hk , which in turn are further decomposed into oper-
ations on individual patches. This property enables reuse of
existing software written for regular grids, such as multigrid
solvers and other numerical routines. The use of rectangular
regions also allows the use of accurate discretization
schemes; irregularities in the discretization are localized
to well-defined regions where the resolution changes.
Figure 1 shows an example grid hierarchy with L = 3
and two patches on each of the two finer levels. Note that
refinement levels are nested, but that patches at different
levels need not be nested.

Typically, we define the solution on the grid hierarchy
�h only at spatial locations that correspond to the finest
grid in the region. In particular, all of �hL−1 represents part
of the solution, as does the subregion of each level �hk−1

that is not covered by �hk , for k = 1, . . . , L − 1. Another
way to say this is that the solution is defined only in grid
cells that have not been refined. Data in cells that have been
refined is used to construct the solution in underlying finer
cells. For instance, these cells can be used to accelerate the
convergence of iterative solution procedures in a manner
similar in spirit to multigrid methods. Usually the values in
refined cells are defined by appropriately averaging values
on the next finer grid.

SAMRAI is an object-oriented C++ library that provides
a flexible and robust toolbox of classes that simplify the
construction of algorithms and data management in parallel
SAMR applications. The library is organized into a collec-
tion of software packages each of which contains classes
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Fig. 1 Example SAMR hierarchy with three grid levels. Each finer
level has two patches whose boundaries are shown with bold lines

with related functionality in SAMR grid computations. A
overview of SAMRAI software organization and capabil-
ities that facilitate application development may be found
in [29]. The parallel performance and scaling properties of
the adaptive capabilities of SAMRAI are discussed in [42].
Here, we briefly mention features of some packages that are
most germane to this paper.

The Hierarchy package provides abstract index space
and box calculus utilities on which most other operations
on a hierarchical SAMR grid depend. Structural classes like
Patch, PatchLevel, and PatchHierarchy, and base
classes for managing variables and data on the SAMR grid
hierarchy also reside here.

The Transfer package provides tools for interlevel
and intralevel data transfers. These include base classes for
operators that refine and coarsen data spatially, interpolate
data in time, and fill physical boundary conditions. The
package also contains communication algorithms and data
transaction schedules for moving data associated with
collections of variables among patches in the grid hierarchy.
Such operations include filling patch data ghost cell values
with data copied from neighboring patches at the same level
or interpolated from patches at coarser levels. At physical
domain boundaries, ghost cells are set to values appropriate
for the boundary conditions and numerical methods being
used.

The Mesh package provides capabilities for construct-
ing an SAMR grid hierarchy and dynamically reconfiguring
the hierarchy during a computation. This functionality in-
cludes interfaces to user routines for selecting grid cells for
refinement. The library clusters these selected cells into box
regions and constructs each new patch level, including load
balancing based on either spatially-uniform or nonuniform
workload estimates, according to user-supplied parameters
[42].

Finally, the Solver package houses basic support for
linear and nonlinear solvers on SAMR grids. For example,

it provides interfaces to solver libraries, like PETSc [2, 3],
and the KINSOL [40] and CVODE [28] solvers contained
in the SUNDIALS package [27]. Also, SAMRAI provides
vector classes that allow one to treat a collection of variable
quantities on a subset of grid levels in an SAMR patch
hierarchy as a single algebraic vector. For instance, one can
define the solution vector for a Newton-Krylov nonlinear
solver to contain cell-centered unknowns, node-centered
unknowns, etc. Then, these quantities can be processed as
a single vector entity in vector kernel operations, such as
norms, inner products, and other algebraic manipulations.
The solver library interfaces allow the chosen solver to
manipulate SAMRAI vector data directly during their
algorithmic execution. That is, the data is not copied from
the SAMR patch hierarchy representation, which facilitates
stencil-based computations, to a form on which the solver
operates. The interfaces also resolve linkage issues between
C and C++ and simplify the implementation of user-defined
routines, such as residual computations and preconditioner
operations, by providing a straightforward C++ inheritance
mechanism to supply function pointers to the solver library.
Much of the development of the SAMRAI Solver package
is the direct result of work described in this paper. We will
discuss these details further in Sect. 4.

3 Algorithms

A software infrastructure for solving nonlinear multi-
physics problems must provide robust and efficient solver
capabilities. Simultaneously, it must allow solution algo-
rithm components to be customized for specific application
needs. For treating time-dependent problems, the software
must manage the time-dependent data and accommodate dif-
ferent time integration strategies. This section provides an
overview of the necessary algorithmic ingredients.

3.1 Implicit methods for initial value problems

Many multi-physics problems can be expressed in the form
of a nonlinear initial value problem (IVP)
∂u

∂t
= f (u), u(0, x) = u0(x), x ∈ � ⊂ R

d (3.1)

together with boundary conditions specified on ∂�. Here,
f is a nonlinear function that involves spatial derivatives of
its argument, u0 is the initial condition, and d is the spa-
tial dimension of the problem. One way to solve (3.1) is to
use the method of lines, in which the derivatives in f are
replaced by suitable discretizations. This semi-discrete ap-
proach transforms the IVP to a large-scale system of ordi-
nary differential equations, which may be solved by a vari-
ety of methods. Solution methods are either explicit, where
advancing the solution in time uses only past information,
or implicit, where the advanced-time solution is determined
by solving a system of equations involving unknowns at the
new solution time. The method of lines leads to problems
that are stiff so that explicit time steps must be very small to
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maintain stability. However, various implicit methods suit-
able for stiff problems are known. In these methods, time
steps are determined solely from considerations of accuracy,
not stability.

Perhaps the simplest and best known example of an im-
plicit method that also works for stiff problems is the back-
ward Euler (BE) method. BE replaces ut in the semi-discrete
equations by a backward difference in time, and the solution
at time tn+1 is found by solving

F(u) ≡ u − u(n) − �t f (u) = 0 (3.2)

where u(n) is the solution at time tn and �t = tn+1 − tn is
the time step. In particular, F is nonlinear when f is nonlin-
ear. Many other methods suitable for stiff problems, such as
schemes based on backward differentiation formulas (BDF)
and implicit Runge-Kutta methods [26], lead to nonlinear
problems that have a similar structure.

For stiff problems, the ability to use larger time steps
gives implicit methods an advantage over explicit methods
only if the cost of solving systems of equations such as
(3.2) is not too large. This difficulty has traditionally mo-
tivated researchers to pursue alternatives to fully implicit
methods, such as operator splitting and linearization. These
approaches are usually problem-specific, can re-introduce
stability-related restrictions on time steps, and often reduce
the order of accuracy of the time discretization method.
In the context of local mesh refinement, this risk is com-
pounded by the danger of precluding any improvement in
spatial accuracy resulting from increased local mesh resolu-
tion. Although these issues are still subjects of intensive ef-
forts, recent algorithmic research has shown that the cost of
solving systems such as (3.2) using inexact Newton methods
can make fully implicit methods competitive in both speed
and accuracy [11, 33, 36].

3.2 Inexact Newton methods

Consider a system of nonlinear equations

F(u) = 0. (3.3)

A basic Newton method for solving (3.3) is given by

ALGORITHM 3.1 NEWTON’S METHOD

CHOOSE AN INITIAL APPROXIMATION u0
AND A TOLERANCE ε > 0.

SET k = 0.
DO {

SOLVE F ′(uk)sk = −F(uk).
uk+1 = uk + sk
k = k + 1

} (WHILE ‖F(uk)‖ > ε)

At each iteration, the Newton step sk is the solution of
a system of linear equations in which the coefficient ma-
trix is the Jacobian F ′(uk) of the nonlinear system evaluated
at the current approximate solution uk . Newton’s method in

this form is impractical for large-scale multi-physics prob-
lems for several reasons. Storage requirements for the Ja-
cobian F ′ may be high, and it may be difficult even to
compute F ′. Also, direct solution of the Newton equa-
tions may be too costly. Fortunately, under mild assump-
tions [14], Newton’s method will still converge when the
Newton step satisfies the inexact Newton condition

‖F(uk) + F ′(uk)sk‖ ≤ η‖F(uk)‖, (3.4)

where the forcing term η satisfies η ∈ (0, 1) and may
be chosen either statically or dynamically; in particular,
superlinear or quadratic convergence can be recovered
by dynamically choosing η = ηk → 0 [18]. Conse-
quently, sk can be determined using an iterative method,
which can dramatically reduce the cost of solving the
Newton equations for large-scale problems. This leads to the
following basic inexact Newton method:

ALGORITHM 3.2 INEXACT NEWTON’S METHOD

CHOOSE AN INITIAL APPROXIMATION u0,
AN INITIAL FORCING TERM η ∈ (0, 1),
AND A TOLERANCE ε > 0.

SET k = 0.
DO {

FIND sk SATISFYING (3.4).
uk+1 = uk + sk
k = k + 1
(OPTIONALLY) CHOOSE A NEW η ∈ (0, 1).

} (WHILE ‖F(uk)‖ > ε)

Remark 3.1. As with classical Newton’s method, inexact
Newton methods are guaranteed to converge only if the
initial approximation is sufficiently close to the solution.
However, globalization strategies that improve the likeli-
hood of convergence from initial approximations far from a
solution are readily incorporated into Algorithm 3.2 [17].

An important subclass of inexact Newton methods is ob-
tained when the Newton equations are approximately solved
with a transpose-free Krylov subspace method [21]. These
so-called Newton-Krylov (NK) methods possess an impor-
tant property: since the transpose-free Krylov subspace
method only requires Jacobian-vector products F ′(uk)v, the
Jacobian need never be formed nor stored. Instead, these
products can be approximated by finite differences

F ′(uk)v ≈ F(uk + εv) − F(uk)

ε
(3.5)

for a suitable choice of the differencing parameter ε. Be-
sides saving memory, this simplifies implementation, partic-
ularly in the case where the nonlinear function F arises from
discretization of a nonlinear problem on a locally refined
grid. Jacobian-free Newton-Krylov methods result from the
combination of using a Krylov subspace method to approxi-
mately solve the Newton equations with finite-difference ap-
proximations (3.5). We use GMRES [38] because it is par-
ticularly effective when a Jacobian-free approach is used.
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The major cost of an inexact Newton method is the de-
termination of the inexact Newton step sk that satisfies (3.4).
In particular, the efficiency of an NK method is determined
by effective preconditioning. Preconditioners that take ad-
vantage of the hierarchical nature of SAMR grids have the
potential to be particularly effective.

3.3 Hierarchical preconditioning

Considerable experience suggests that using multilevel pre-
conditioning strategies with Newton-Krylov methods leads
to robust, efficient, and scalable algorithms for a wide va-
riety of problems [32]. It is reasonable to expect that this
approach can be extended to SAMR grids, provided that we
properly account for the nature of the local refinement. The
Fast Adaptive Composite grid (FAC) method [35] can form
the basis for extending these ideas to SAMR grids. A basic
description of FAC for solving Lh uh = f h on � is given
by

ALGORITHM 3.3 FAC METHOD

INITIALIZE: rh = f h − Lh uh

FOR k = L − 1, . . . , 1 {
SET f hk = Ihk

hk
rhk .

SOLVE/SMOOTH Lhk uhk = f hk .

CORRECT uhk = uhk + Ihk
hk

uhk .
UPDATE rhk = f hk − Lhk uhk .

}
SOLVE Lh0uh0 = f h0 .

FOR k = 1, . . . , L − 1 {
CORRECT uhk = uhk + Ihk

hk−1
uhk−1 .

SET f hk = Ihk
hk

( f hk − Lhk uhk ).

SOLVE/SMOOTH Lhk uhk = f hk .

CORRECT uhk = uhk + Ihk
hk

uhk .

}
In Algorithm 3.3, grid functions uh , rh , and f h are de-

fined on the grid hierarchy �h , while uhk and f hk are de-
fined only on the level �hk . Lh refers to a linear operator
that has been discretized on �h , and Lhk refers to a restric-
tion of Lh to �hk . In particular, Lh accounts for the change
in resolution at the interfaces between coarse and fine levels,
and Lhk is equipped with suitable boundary conditions at the

boundaries of �hk . The operators Ihk
hk−1

: �hk−1 → �hk per-

form data transfers and play a role similar to prolongation in
multigrid, interpolating data in �hk ∩ �hk−1 (at hk−1 resolu-
tion) to �hk . Additional transfer operators Ihk

hk
: �hk → �hk

and Ihk
hk

: �hk → �hk serve to extract a level from �hk

and insert a level into �hk , respectively. These operations

are primarily copy operations, with the exception that in an
implementation Ihk

hk
often includes additional operations on

∂�hk to fill ghost cells. See [35] for full details.
FAC shares many elements in common with multigrid

methods. Consider the V-cycle specified in Algorithm 3.3.
An exact solve, which could be provided by a multigrid
solver, is used on �h0 . On �hk , a correction is constructed
on each finer level �hk , k > 0, by first computing the resid-
ual on �hk and mapping it to �hk . A single level correction
is then calculated on �hk by solving (or smoothing) a resid-
ual equation on �hk . The solution is corrected on �hk and
the residual is updated on �hk . The residual is then restricted
to �hk−1 . The procedure then recurses through coarser lev-
els on the SAMR grid. Upon return from the recursion, the
solution is corrected on �hk , followed by an update of the
residual on �hk . A post-smoothing sweep on �hk and a sec-
ond correction on �hk completes the cycle. Other cycling
strategies, such as a coarse-to-fine slash cycle (suitable for
problems where a good initial approximation is not known)
or F-cycles (suitable for robustness when the coarsest grid is
not solved exactly) are also possible.

We emphasize that FAC is driven by residuals that are
calculated on �hk and accounts for changes in resolution at
coarse-fine interfaces via the operators Lhk obtained through
some discretization on �hk . The details of the discretization
depends on the underlying uniform grid discretization and
the specific problem being solved.

4 Software infrastructure

The SAMRAI AMR library provides parallel data manage-
ment and supports the interaction of the various algorithmic
pieces in our implicit-timestepping, Newton-Krylov-FAC
solution strategy. In this section, we describe the essential
design features of implicit timestepping and interfaces to
solution methods for systems of nonlinear equations on an
SAMR grid hierarchy. Nonlinear solver capabilities, such as
inexact Newton methods, are provided through interfaces to
the solver libraries KINSOL and PETSc. We are primarily
concerned with software design that promotes algorith-
mic flexibility and efficient implementation of different
numerical aspects associated with solving nonlinear prob-
lems. Discussion of parallel scaling of data communication
and adaptive meshing operations in SAMRAI may be found
in [42].

Our approach solves key problems associated with
compartmentalizing algorithmic control and treating non-
uniform data structures across software libraries. The main
difficulties result from choices made by solver library devel-
opers who wish to provide specific algorithmic content in
a general manner for use in a broad range of applications.
Typically, the data structures in these libraries, such as vec-
tors and matrices, are designed for high performance of the
target algorithms. This approach is very useful and flexible
from a solver perspective. However, application developers
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who use the libraries may need to provide data for their prob-
lem in a form suited to the solvers but less-suited for their
numerical methods. The result can be a monolithic applica-
tion code implementation requiring data copies between the
solvers and the application. Also, it may be difficult for ap-
plication developers to modify or employ different aspects
of solver libraries.

For example, hypre [20] provides powerful multigrid al-
gorithms, but requires problem data to be transformed into
matrix and vector representations that are highly tuned to
linear algebra needs and that do not provide capabilities
for locally-refined grids. Multilevel preconditioners, such as
FAC, can be expressed abstractly in terms of operations on
levels in a locally-refined grid hierarchy. It is straightforward
to use hypre operations, such as solving on a level, but other
finer-grained capabilities, such as smoothing on a level, are
not accessible. Also, customized operations, such as spe-
cialized prolongation and restriction, are best performed us-
ing abstractions that naturally expresses the necessary oper-
ations.

Nonlinear solver engines are typically layered atop lin-
ear solver libraries and likewise do not provide the means
to manage the data complexity associated with locally-
refined grids. Although KINSOL and PETSc provide their
own vector types, they fortunately allow these vectors to
be replaced with other suitable data structures. This is ex-
tremely valuable, since evaluation of nonlinear residuals and
Jacobian-vector products on an SAMR grid hierarchy is fa-
cilitated by exploiting the multilevel representation.

In the following sections, we explore these issues
further and discuss how our software approach accom-
modates a broad range of algorithmic generality and
flexibility.

4.1 Implicit time discretization

Any practical implementation of an implicit time integra-
tion method should include several features besides set-
ting up and solving a method-specific system of equations
such as (3.2). If variable timestepping is used, some means
for selecting the next timestep must be provided. In ad-
dition, solution of the implicit equations can be aided by
providing an improved initial approximation to the time-
advanced solution; for example, one may extrapolate in
time from earlier solution values. Acceptability of the
time-advanced solution delivered by the nonlinear solver
must be determined also. If it is unacceptable, some ac-
tion must be taken to recompute the solution, perhaps
with a smaller timestep. In general, this requires problem-
specific evaluation of the integrated solution. Addition-
ally, failure of the nonlinear solver to converge to spec-
ified accuracy should be handled gracefully when possi-
ble. Finally, data structures that manage the time-dependent
solution process must be updated. Following is an out-
line for the backward Euler method that incorporates these
features.

ALGORITHM 4.1 BACKWARD EULER METHOD

SET t = t0, n = 0, u(0) = u0.
CHOOSE AN INITIAL TIME INCREMENT �t .
t = t + �t .
DO {

DO {
CHOOSE INITIAL APPROXIMATION FOR u(n+1).

SOLVE (3.2) TO OBTAIN u(n+1).
} (UNTIL u(n+1) IS SATISFACTORY)

UPDATE SOLUTION.
CHOOSE A NEW �t .
t = t + �t , n = n + 1.

} (WHILE t ≤ tfinal)

Backward Euler implicit time discretization serves as
a useful archetype for exploring the issues in more so-
phisticated and accurate integration methods. Currently, we
provide an implementation of this method. Higher-order
schemes, such as Crank-Nicolson, BDF and implicit Runge-
Kutta methods, can readily be accommodated within the
same framework.

Figure 2 depicts the organization and relationships
among the solution components in our design. The figure
shows the abstract interface classes and concrete imple-
mentations obeying those interfaces as well as most of the
important member functions of each class. The Implicit
Integrator object is the main driver for the integration
process. It coordinates routines that implement the spatial
and temporal aspects of the numerical approximation via
the NonlinearSolverStrategy and Implicit
IntegratorStrategy interfaces, respectively.

The ImplicitIntegratorStrategy class de-
fines the interface for methods that treat the temporal
discretization. Each “strategy” class in our design fol-
lows the Strategy object-oriented design pattern [24]. In
particular, a strategy is an abstract base class that defines
the interface for a concrete implementation that is pro-
vided by a derived subclass. For example, the application
code must define the variables comprising the solution
vector, compute an initial guess for the next time inte-
gration step, select the timestep �t , determine whether a
solution is acceptable, and manage storage for the solution
and other problem-dependent quantities when an acceptable
solution is found. These operations are declared in the
ImplicitIntegratorStrategy interface.

4.2 Interfaces to nonlinear solvers

A simple interface for solving a system of nonlinear equa-
tions is defined by the NonlinearSolverStrategy
class. Any nonlinear solver that implements this interface
can be used. Currently, we provide two concrete nonlinear
solvers by using the suites of inexact Newton methods
found in the KINSOL and PETSc libraries.

The SNES SAMRAIContext class exposes PETSc
functionality and the KINSOL SAMRAIContext class
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Fig. 2 Organizational structure of implicit timestepping and nonlinear solver classes and interfaces. Abstract interfaces are specified with itali-
cized type, while concrete classes are denoted with standard type. Inheritance is indicated with an open triangle pointing toward the base class,
and a solid arrow indicates when an object maintains a reference (e.g., a pointer) to another object. Most of the more important member func-
tions for each class are also indicated. Note that the solver libraries, KINSOL or PETSc, interact directly with the “wrapper” classes, either
KINSOL-SAMRAIContext and SNES-SAMRAIContext, only

does the same for KINSOL. These two classes are wrap-
pers that follow the Adapter object-oriented design pattern
[24]. User code may either call solver library routines di-
rectly or access the solvers through these wrapper classes.
However, the wrappers expose the necessary functionality
of their corresponding solver libraries in a uniform fash-
ion that makes use of either solver library in an applica-
tion simple and straightforward. The wrappers also per-
form useful functions in our design beyond implementing
the NonlinearSolverStrategy interface. They pro-
vide additional capabilities, such as input and restart file
processing, provided by SAMRAI so that these things can
be done uniformly by the application and solvers. Finally,
the wrappers eliminate complexity for users by handling the
details of linking C and C++ code, especially when the C
code calls C++ class methods. Solver-specific interfaces to
user code are defined in the SNESAbstractFunctions
and KINSOLAbstractFunctions abstract base classes.
These classes provide an inheritance-based, object-oriented
mechanism for providing user routines to the solvers.

The ability to leverage the KINSOL and PETSc libraries
is possible since each of their inexact Newton method im-
plementations is written in terms of operations on vectors,
as described in Sect. 3.2, and these vectors can be replaced.
We replace the vectors from these libraries with SAMRAI
vectors, which provide vector data management and oper-
ations for an SAMR grid hierarchy managed by SAMRAI.
This situation is described in more detail below.

4.3 Sharing solution vectors among software components

Typically, application codes use vectors as containers for any
number of variables that possibly have different grid cen-

terings, such as cell-centered and node-centered quantities.
In the simplest usage, a single variable defined on a sin-
gle global grid is mapped to a single-indexed vector using
some ordering scheme; for a structured grid, lexicograph-
ical ordering is the usual choice. When multiple variables
are present in a simulation, a variety of mappings are pos-
sible. For example, storage can be mapped to single-index
vector locations one variable at a time, or one grid cell at a
time (sometimes referred to as block mapping). When mixed
centerings are used, as happens, for example, in a staggered
grid discretization for fluids in which the velocity field is
face-centered and the pressure is cell-centered, more care is
needed due to the different number of grid locations for each
type of grid centering. Usually, the mapping of unknowns
represented by multiple variable grid quantities to a vector
that can be processed by a solver library is the responsibility
of application code developer employing the solver. SAM-
RAI vectors provide a natural way to employ solvers to solve
problems that involve more than one variable quantity on the
SAMR grid hierarchy as we describe below.

The concept of a vector readily extends to distributed
memory environments by including additional bookkeeping
for mapping portions of vectors onto different processors.
Often both global indices and local indices are employed.
Operations can readily be defined on such distributed vec-
tors without difficulty; in fact this can be done in a way that
makes the location of data completely transparent to an ap-
plication code.

Many applications maintain a dual description of their
data, if only implicitly. In one description, data resides in
contiguous single-indexed locations. In another, the grid-
based nature of the data is used through references to nearest
neighbors using offsets into other single-indexed locations.
In fully unstructured calculations, this idea is generalized by
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supplementing the vector representation with neighbor lists
associated with each vector index.

A SAMR grid hierarchy introduces new complications.
For example, all data values at all grid locations on all grid
levels are not typically considered to be part of the numeri-
cal solution. Although data may be allocated on all levels in
a particular region of the domain, the finest grid in a region
usually contains the desired solution values. Moreover, the
grid can change dynamically during the course of an adap-
tive calculation. This will change the dimension of the vector
space for the problem as well as which grid points on each
level hold valid solution values.

A SAMRAIVector object handles these complexities
transparently for the user and the solver by translating vector
routines into operations for data stored on a SAMR grid hier-
archy. Each SAMRAIVector simply maintains a pointer to
the SAMR grid on which the variables are defined and holds
information for accessing the variable data on patches in the
grid hierarchy, such as an integer index for the location of
the data in an array of patch data objects. Vector operations
suitable for different grid centerings are also provided and
shared by all vector objects. Thus, a SAMRAIVector has
negligible storage overhead and derives all of its function-
ality from SAMRAI grid and data management capabilities.
In addition, a SAMRAIVector object never changes to ac-
comodate changes in the algebraic structure of the vector
due to regridding operations. Grid changes affect the patch
configuration of the SAMR hierarchy only. Such flexibility
is not generally found in solver libraries. In fact, changing
a vector supplied by a solver library usually requires one to
change the solver as well by reinitializing its state. Figure 3
depicts the structure of a SAMRAIVector object.

It is also possible to register a weight quantity that ap-
plies to one or more variable components registered with a
SAMRAIVector. This weight can serve several purposes.
For one, it can be used to mask data on coarse grid cells
that are covered by finer cells. It can also be used to store
quadrature information that reflects the manner in which the
discretization is derived. For example, it is natural to define
a norm by summing over the levels in the hierarchy, patches
P in each level, and indexes in each patch:

‖ f 2‖ = 1

V

L−1∑

k=0

∑

P∈�hk

∑

(i, j)∈P
| fi, j |2Vi, j

Fig. 3 Layout of a SAMRAIVector object. Each vector holds infor-
mation for manipulating data associated with the variables registered
with the vector, such as applying vector kernel operations for the ap-
propriate data centering, and weights for treating multi-resolution data

Fig. 4 A SAMRAIVector object is wrapped to provide operations
specific to the KINSOL and PETSc solver libraries

where V is the volume of the domain � and

Vi, j =
{

vol(�i, j ) if cell (i, j) ∈ �hk − �hk+1

0 otherwise

This definition of a norm is the natural discrete analog of the
continuous L2 norm and has the property that ‖1‖ = 1, inde-
pendent of the number of levels and grid cells in the SAMR
grid configuration. This is accomplished by a suitable ini-
tialization of each weight quantity and is fairly straightfor-
ward to maintain as the grid configuration changes during
dynamic regridding using SAMRAI utilities.

As noted earlier, KINSOL and PETSc provide their own
vectors, called N vectors and Vecs, respectively. These
structures have distinct storage schemes and operations spe-
cific to the implementation of their respective solver engines.
SAMRAI exploits the fact that these solver libraries allow
their vector structures to be replaced by supplying classes
that wrap SAMRAIVector objects as solver-specific vec-
tors. This is illustrated in Fig. 4.

The SAMRAI library provides abstract base classes
kins AbstractVector and petc AbstractVec-
tor to facilitate the use of C++ vector objects in the
solver libraries, which are written in C. These interfaces
are designed to be independent of SAMRAI; their primary
role is to simplify linking C and C++ code. Each subclass
KINSOL SAMRAIVector and PETSc SAMRAIVector
wraps a SAMRAIVector for use by the corresponding
solver library. Each wrapper translates calls to vector kernel
operations made within the solver to routines supplied by
the SAMRAIVector class. Typical usage of one of these
wrapper classes involves first creating a SAMRAIVector
object, then “wrapping” it via a static creation method which
also creates a vector object recognized by either KINSOL or
PETSc. The static methods facilitate creation and destruc-
tion of vectors and wrappers in application code as well from
within solver library code. There is negligible storage and
performance overhead associated with this decoupling, and
software maintenance is simplified as each of the libraries
changes independently.

One additional point related to vector storage overhead is
worth noting. While ghost cells are needed for most solution
variables when they are used in stencil-based operations, lin-
ear algebraic operations in solver libraries do not require
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them. KINSOL and PETSc both create internal workspace
by cloning vectors provided by the application. Including
ghost cells in these cloned vectors could lead to a potentially
unacceptable storage overhead when there is a large number
of small patches in a large three-dimensional problem, or
when the dimension of the Krylov subspace is large. Also,
embedding ghost cells in a vector reduces the efficiency of
vector operations by requiring non-unit strides between vec-
tor elements separated by ghost cells.

In our approach, the solution vector defined for the solver
typically is defined to have patch data components with-
out ghost cells. Since the solution vector is passed to the
solver during initialization, all internal state vectors cloned
from that reference vector will also have data with no ghost
cell storage. Then, it is the responsibility of each application
code routine to supplement incoming vector data with ghost
cell storage and set data in the ghost regions when neces-
sary. Also, before control is returned to the nonlinear solver,
changes to vector values (excluding ghost data) must be
passed back to the proper vector storage used by the solver
through local (i.e., on processor) copies. With minor vari-
ations, this approach is rather standard for applications de-
veloped for distributed memory high-performance comput-
ing systems. Also, upon reflection, it should be apparent that
placing these data management responsibilities on user rou-
tines is desirable for multi-physics problems involving com-
plicated boundary conditions and sophisticated composite
grid numerical discretizations. The SAMRAI Transfer
package provides powerful capabilities to manage these is-
sues in a general application code.

4.4 Preconditioning

The implicit timestepping classes and interfaces to the non-
linear solver libraries are designed to be general and flexible.
In particular, the interfaces to the nonlinear solvers provide
the full capabilities of the underlying software. However, it
is much more difficult to deliver the same degree of gen-
erality and flexibility for preconditioning due to the variety
of application requirements and possible algorithmic strate-
gies. Since preconditioner performance is key to overall al-
gorithm performance, it is important to adopt an approach
that sufficiently decouples the preconditioner from the rest
of the solution strategy so that the exploration of various pre-
conditioner techniques is not precluded.

Problem-specific aspects of FAC can be found by ex-
amining Algorithm 3.3. In particular, it is apparent that a
generic implementation must allow an application to fully
specify the discrete operator Lh , including physical bound-
ary conditions and discretization at changes in grid resolu-
tion. Further, multigrid experience demonstrates that defin-

ing the interlevel transfer operator Ihk
hk−1

in terms of the grid

geometry alone often leads to difficulties for certain prob-
lems, such as those involving diffusion operators with dis-
continuous coefficients. Such difficulties can often be allevi-
ated by using operator-dependent interlevel transfers, which

often form the basis of “black-box” multigrid packages
[13, 15]. While geometry-based interlevel transfers can use
capabilities that are already built into SAMRAI, operator-
dependent interlevel transfers, which are defined in terms of
the particular equations being solved, are outside the scope
of the framework.

We implement an FAC preconditioner in two separate
components. The first supplies the basic FAC scheduling
algorithm for visiting levels of �h and is independent of
the problem being solved. The second is a problem-specific
component in which application developers define the
problem and implement interlevel transfer operations via
inheritance from an interface that follows the strategy
design pattern. At this stage of development, the capabilities
are sufficiently flexible to treat diffusion operators with
discontinuous coefficients as well as problems having
multiple variables per gridpoint. However, we consider our
implementation rudimentary and will present more details
in future work.

The benefits of such an approach are becoming appar-
ent in an ongoing effort that uses this solver infrastructure
to extend the methods of [11] to locally refined grids. In this
work, multilevel solves for a Poisson problem, a convection-
diffusion problem, and a convection-diffusion problem in-
volving a tensor-valued diffusion coefficient are needed to
implement the preconditioner. The above strategy allows us
to coordinate these parts of the overall solution approach by
forcing us to implement only the operator-specific aspects
of each solver, re-using the component that implements the
FAC scheduling algorithm.

5 Example calculations

We demonstrate the capabilities of the software and algo-
rithmic components described on an unsteady version of the
Bratu problem:

∂u

∂t
= �u + λeu + f, t ≥ 0, (x, y) ∈ � ≡ [0, 1]2 (5.1)

with initial and boundary conditions

u(x, y, 0) = 0 (x, y) ∈ �
u(x, y, t) = 0 t > 0, (x, y) ∈ ∂�

where the source term f is determined by specifying the
exact solution

u(x, y) = t x(1 − x)y(1 − y)e
− (x− 1

2 )2+(y− 1
2 )2

σ2 .

The parameter σ provides a mechanism to adjust the size of
the solution feature requiring enhanced resolution. Both the
number of refinement levels and the size of the base grid are
varied. Static refinement regions are defined simply as

�k =
[

2k − 1

2k+1
,

2k + 1

2k+1

]2

, k = 0, 1, 2, . . .

with �0 = �.
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Fig. 5 Verification study of Newton-Krylov-FAC method. The top plot depicts the error, measured with a weighted L2 norm, as a function of
base mesh size, for several different degrees of local refinement. The bottom plot depicts the amount of work needed to compute the solution as
a function of the number of refinement levels, for a variety of different base meshes

The concrete FAC solver used in this example uses red-
black Gauß-Seidel smoothing on the finer levels. Interlevel
transfers use bilinear interpolation for both restriction and
prolongation. The coarsest level is solved to a prescribed tol-
erance of 10−4 using the PFMG solver from hypre [20].

Except for cells adjacent to changes in resolution, the
problem can be discretized using the usual finite volume ap-
proach. Near coarse/fine interfaces, this must be modified in
two ways. First, for cells on the coarse side of the coarse/fine
interface, the coarse cell flux at the face shared by two fine
cells must be set to the sum of the two fine cell fluxes.
Second, the computation of the fine cell fluxes must ac-
count for the change in resolution as well as the fact that
cell-centered data at different resolution is not properly
aligned. The fine fluxes are computed using a simple dif-
ference of coarse and fine data together with a tangential
correction that is computed on the fine side of the interface
[19].

The solution is advanced to a final time of tfinal = 1.
Results for σ = 0.01 and time step �t = 0.125 appear
in Fig. 5. The base grid with h = 1/16 and no refinement
fails to resolve the solution feature; three further local re-
finements are needed before adequate resolution is obtained.
In this case the finest grid has a mesh size of h = 1/128 and
achieves slightly better accuracy than is obtained with this
global mesh size using 98% fewer gridpoints. For a given
number of refinement levels, using a finer base mesh yields
roughly second-order improvements in accuracy; for a given
base mesh, adding refinement levels yields slightly less than
second-order improvements in accuracy. Further, for each
base grid size, the number of linear iterations per time step
is nearly independent of the number of refinement levels.

6 Conclusions

We have discussed algorithm needs for solving large-scale
nonlinear problems on locally refined grids, and have

described a software infrastructure that supports these needs
with a significant degree of flexibility to explore algorithmic
choices. Two particularly important contributions have been
described. First, effective software reuse has been achieved
and nontrivial software interoperability hurdles have been
resolved. Newton-Krylov nonlinear solver implementations
in the PETSc and KINSOL libraries are expressed in
terms of high-level operations on vectors. Interoperability
between the solver libraries and SAMRAI is accomplished
by redefining these operations so that the solvers can operate
directly on SAMR grid hierarchy data. Furthermore, in the
operations provided by the solvers, data is managed by
SAMRAI, and, other than user-defined operations, no data
copies need to be made. This sort of data structure decou-
pling also allows hierarchical preconditioning strategies
using SAMR grid operations provided by SAMRAI to be
easily coordinated with the nonlinear solver libraries. Note
that this contrasts with the approach taken in [10], where the
preferred strategy was to copy data between the solver pack-
age and the grid package. Second, algorithmic flexibility
and robustness was achieved. Time integration strategies,
nonlinear solver implementations, and preconditioner
algorithms are decomposed and sufficiently separated from
problem-specific concerns so that algorithmic variations
may be explored fairly easily for a given problem. Also, we
demonstrated convergence rates independent of the number
of mesh refinement levels for a simple nonlinear heat
equation. While this is a minimum requirement that must
be met before extending these strategies to more realistic
problems, current work is showing that the approach and
tools described in this paper are applicable to more complex
problems.
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